Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Mol Ecol ; 31(13): 3672-3692, 2022 07.
Article in English | MEDLINE | ID: covidwho-1846261

ABSTRACT

Coronaviruses (CoVs) have complex genomes that encode a fixed array of structural and nonstructural components, as well as a variety of accessory proteins that differ even among closely related viruses. Accessory proteins often play a role in the suppression of immune responses and may represent virulence factors. Despite their relevance for CoV phenotypic variability, information on accessory proteins is fragmentary. We applied a systematic approach based on homology detection to create a comprehensive catalogue of accessory proteins encoded by CoVs. Our analyses grouped accessory proteins into 379 orthogroups and 12 super-groups. No orthogroup was shared by the four CoV genera and very few were present in all or most viruses in the same genus, reflecting the dynamic evolution of CoV genomes. We observed differences in the distribution of accessory proteins in CoV genera. Alphacoronaviruses harboured the largest diversity of accessory open reading frames (ORFs), deltacoronaviruses the smallest. However, the average number of accessory proteins per genome was highest in betacoronaviruses. Analysis of the evolutionary history of some orthogroups indicated that the different CoV genera adopted similar evolutionary strategies. Thus, alphacoronaviruses and betacoronaviruses acquired phosphodiesterases and spike-like accessory proteins independently, whereas horizontal gene transfer from reoviruses endowed betacoronaviruses and deltacoronaviruses with fusion-associated small transmembrane (FAST) proteins. Finally, analysis of accessory ORFs in annotated CoV genomes indicated ambiguity in their naming. This complicates cross-communication among researchers and hinders automated searches of large data sets (e.g., PubMed, GenBank). We suggest that orthogroup membership is used together with a naming system to provide information on protein function.


Subject(s)
Coronavirus , Amino Acid Sequence , Coronavirus/chemistry , Coronavirus/genetics , Evolution, Molecular , Genome, Viral/genetics , Open Reading Frames/genetics
2.
Microbiol Spectr ; 10(1): e0278021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1700612

ABSTRACT

Understanding the immune response to severe acute respiratory syndrome coronavirus (SARS-CoV-2) is critical to overcome the current coronavirus disease (COVID-19) pandemic. Efforts are being made to understand the potential cross-protective immunity of memory T cells, induced by prior encounters with seasonal coronaviruses, in providing protection against severe COVID-19. In this study we assessed T-cell responses directed against highly conserved regions of SARS-CoV-2. Epitope mapping revealed 16 CD8+ T-cell epitopes across the nucleocapsid (N), spike (S), and open reading frame (ORF)3a proteins of SARS-CoV-2 and five CD8+ T-cell epitopes encoded within the highly conserved regions of the ORF1ab polyprotein of SARS-CoV-2. Comparative sequence analysis showed high conservation of SARS-CoV-2 ORF1ab T-cell epitopes in seasonal coronaviruses. Paradoxically, the immune responses directed against the conserved ORF1ab epitopes were infrequent and subdominant in both convalescent and unexposed participants. This subdominant immune response was consistent with a low abundance of ORF1ab encoded proteins in SARS-CoV-2 infected cells. Overall, these observations suggest that while cross-reactive CD8+ T cells likely exist in unexposed individuals, they are not common and therefore are unlikely to play a significant role in providing broad preexisting immunity in the community. IMPORTANCE T cells play a critical role in protection against SARS-CoV-2. Despite being highly topical, the protective role of preexisting memory CD8+ T cells, induced by prior exposure to circulating common coronavirus strains, remains less clear. In this study, we established a robust approach to specifically assess T cell responses to highly conserved regions within SARS-CoV-2. Consistent with recent observations we demonstrate that recognition of these highly conserved regions is associated with an increased likelihood of milder disease. However, extending these observations we observed that recognition of these conserved regions is rare in both exposed and unexposed volunteers, which we believe is associated with the low abundance of these proteins in SARS-CoV-2 infected cells. These observations have important implications for the likely role preexisting immunity plays in controlling severe disease, further emphasizing the importance of vaccination to generate the immunodominant T cells required for immune protection.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Amino Acid Sequence , CD8-Positive T-Lymphocytes/immunology , COVID-19/genetics , COVID-19/virology , Conserved Sequence , Coronavirus/chemistry , Coronavirus/classification , Coronavirus/genetics , Coronavirus/immunology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cross Reactions , Epitope Mapping , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , Memory T Cells/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
PLoS Comput Biol ; 17(12): e1009675, 2021 12.
Article in English | MEDLINE | ID: covidwho-1619980

ABSTRACT

Identifying the epitope of an antibody is a key step in understanding its function and its potential as a therapeutic. Sequence-based clonal clustering can identify antibodies with similar epitope complementarity, however, antibodies from markedly different lineages but with similar structures can engage the same epitope. We describe a novel computational method for epitope profiling based on structural modelling and clustering. Using the method, we demonstrate that sequence dissimilar but functionally similar antibodies can be found across the Coronavirus Antibody Database, with high accuracy (92% of antibodies in multiple-occupancy structural clusters bind to consistent domains). Our approach functionally links antibodies with distinct genetic lineages, species origins, and coronavirus specificities. This indicates greater convergence exists in the immune responses to coronaviruses than is suggested by sequence-based approaches. Our results show that applying structural analytics to large class-specific antibody databases will enable high confidence structure-function relationships to be drawn, yielding new opportunities to identify functional convergence hitherto missed by sequence-only analysis.


Subject(s)
Antigens, Viral/chemistry , COVID-19/immunology , COVID-19/virology , Epitopes, B-Lymphocyte/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Specificity , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/genetics , Antigen-Antibody Reactions/genetics , Antigen-Antibody Reactions/immunology , Computational Biology , Coronavirus/chemistry , Coronavirus/genetics , Coronavirus/immunology , Databases, Chemical , Epitope Mapping , Epitopes, B-Lymphocyte/genetics , Humans , Mice , Models, Molecular , Pandemics , SARS-CoV-2/genetics , Single-Domain Antibodies/immunology
4.
Chem Biol Drug Des ; 99(4): 585-602, 2022 04.
Article in English | MEDLINE | ID: covidwho-1573643

ABSTRACT

Seven types of Coronaviruses (CoVs) have been identified that can cause infection in humans, including HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, SARS-CoV, HCoV-MERS, and SARS-CoV-2. In this study, we investigated the genetic structure, the homology of the structural protein sequences, as well as the investigation of the active site of structural proteins. The active site of structural proteins was determined based on the previous studies, and the homology of their amino acid sequences and structure was compared. Multiple sequence alignment of Spike protein of HCoVs showed that the receptor-binding domain of SARS-CoV-2, SARS-CoV, and MERS-CoV was located at a similar site to the S1 subunit. The binding motif of PDZ (postsynaptic density-95/disks large/zona occludens-1) of the envelope protein, was conserved in SARS-CoV and SARS-CoV-2 according to multiple sequence alignment but showed different changes in the other HCoVs. Overall, spike protein showed the most variation in its active sites, but the other structural proteins were highly conserved. In this study, for the first time, the active site of all structural proteins of HCoVs as a drug target was investigated. The binding site of these proteins can be suitable targets for drugs or vaccines among HCoVs.


Subject(s)
Coronavirus , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Spike Glycoprotein, Coronavirus , Catalytic Domain , Coronavirus/chemistry , Humans , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry
5.
Sci Rep ; 11(1): 23315, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1550334

ABSTRACT

The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory infections to the common cold. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based experimental assessment reveals several clinically-relevant drug repurposing candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/metabolism , Drug Development/methods , Drug Repositioning/methods , Benzamides/pharmacology , Cell Line , Computer Simulation , Coronavirus/chemistry , Databases, Pharmaceutical , Drug Discovery/methods , Host-Pathogen Interactions , Humans , Imidazoles/pharmacology , Interleukin-1 Receptor-Associated Kinases/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Triazines/pharmacology , COVID-19 Drug Treatment
6.
Proteins ; 90(3): 848-857, 2022 03.
Article in English | MEDLINE | ID: covidwho-1519517

ABSTRACT

We introduce multiple interface string alignment (MISA), a visualization tool to display coherently various sequence and structure based statistics at protein-protein interfaces (SSE elements, buried surface area, ΔASA , B factor values, etc). The amino acids supporting these annotations are obtained from Voronoi interface models. The benefit of MISA is to collate annotated sequences of (homologous) chains found in different biological contexts, that is, bound with different partners or unbound. The aggregated views MISA/SSE, MISA/BSA, MISA/ΔASA, and so forth, make it trivial to identify commonalities and differences between chains, to infer key interface residues, and to understand where conformational changes occur upon binding. As such, they should prove of key relevance for knowledge-based annotations of protein databases such as the Protein Data Bank. Illustrations are provided on the receptor binding domain of coronaviruses, in complex with their cognate partner or (neutralizing) antibodies. MISA computed with a minimal number of structures complement and enrich findings previously reported. The corresponding package is available from the Structural Bioinformatics Library (http://sbl.inria.frand https://sbl.inria.fr/doc/Multiple_interface_string_alignment-user-manual.html).


Subject(s)
Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Sequence , Computational Biology , Databases, Protein , Models, Molecular , Protein Binding , Protein Conformation , Sequence Analysis, Protein , User-Computer Interface
7.
Cell ; 184(1): 184-193.e10, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1385213

ABSTRACT

Transcription of SARS-CoV-2 mRNA requires sequential reactions facilitated by the replication and transcription complex (RTC). Here, we present a structural snapshot of SARS-CoV-2 RTC as it transitions toward cap structure synthesis. We determine the atomic cryo-EM structure of an extended RTC assembled by nsp7-nsp82-nsp12-nsp132-RNA and a single RNA-binding protein, nsp9. Nsp9 binds tightly to nsp12 (RdRp) NiRAN, allowing nsp9 N terminus inserting into the catalytic center of nsp12 NiRAN, which then inhibits activity. We also show that nsp12 NiRAN possesses guanylyltransferase activity, catalyzing the formation of cap core structure (GpppA). The orientation of nsp13 that anchors the 5' extension of template RNA shows a remarkable conformational shift, resulting in zinc finger 3 of its ZBD inserting into a minor groove of paired template-primer RNA. These results reason an intermediate state of RTC toward mRNA synthesis, pave a way to understand the RTC architecture, and provide a target for antiviral development.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cryoelectron Microscopy , RNA, Messenger/chemistry , RNA, Viral/chemistry , SARS-CoV-2/chemistry , Viral Replicase Complex Proteins/chemistry , Amino Acid Sequence , Coronavirus/chemistry , Coronavirus/classification , Coronavirus/enzymology , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Methyltransferases/metabolism , Models, Molecular , RNA Helicases/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/enzymology , Sequence Alignment , Transcription, Genetic , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication
9.
ACS Appl Mater Interfaces ; 13(26): 30295-30305, 2021 Jul 07.
Article in English | MEDLINE | ID: covidwho-1337092

ABSTRACT

As viruses have been threatening global public health, fast diagnosis has been critical to effective disease management and control. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) is now widely used as the gold standard for detecting viruses. Although a multiplex assay is essential for identifying virus types and subtypes, the poor multiplicity of RT-qPCR makes it laborious and time-consuming. In this paper, we describe the development of a multiplex RT-qPCR platform with hydrogel microparticles acting as independent reactors in a single reaction. To build target-specific particles, target-specific primers and probes are integrated into the particles in the form of noncovalent composites with boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs). The thermal release characteristics of DNA, primer, and probe from the composites of primer-BNNT and probe-CNT allow primer and probe to be stored in particles during particle production and to be delivered into the reaction. In addition, BNNT did not absorb but preserved the fluorescent signal, while CNT protected the fluorophore of the probe from the free radicals present during particle production. Bicompartmental primer-incorporated network (bcPIN) particles were designed to harness the distinctive properties of two nanomaterials. The bcPIN particles showed a high RT-qPCR efficiency of over 90% and effective suppression of non-specific reactions. 16-plex RT-qPCR has been achieved simply by recruiting differently coded bcPIN particles for each target. As a proof of concept, multiplex one-step RT-qPCR was successfully demonstrated with a simple reaction protocol.


Subject(s)
Hydrogels/chemistry , Multiplex Polymerase Chain Reaction/methods , Nanotubes, Carbon/chemistry , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Boron Compounds/chemistry , Coronavirus/chemistry , DNA Primers/chemistry , DNA, Single-Stranded/chemistry , Fluorescent Dyes/chemistry , Graphite/chemistry , Influenza A virus/chemistry , Newcastle disease virus/chemistry , Proof of Concept Study , RNA, Viral/chemistry , Virus Diseases/diagnosis
10.
Arch Virol ; 166(7): 1811-1817, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1155281

ABSTRACT

Coronaviruses are a large family of important pathogens that cause human and animal diseases. At the end of 2019, a pneumonia epidemic caused by a novel coronavirus brought attention to coronaviruses. Exploring the interaction between the virus and its receptor will be helpful in developing preventive vaccines and therapeutic drugs. The coronavirus spike protein (S) plays an important role in both binding to receptors on host cells and fusion of the viral membrane with the host cell membrane. This review introduces the structure and function of the S protein and its receptor, focusing on the binding mode and binding region of both.


Subject(s)
Coronavirus/metabolism , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Binding Sites , COVID-19/metabolism , COVID-19/virology , Coronavirus/chemistry , Coronavirus/physiology , Humans , Protein Binding , Protein Conformation , Receptors, Virus/classification , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/classification , Virus Internalization
11.
Nat Commun ; 12(1): 1607, 2021 03 11.
Article in English | MEDLINE | ID: covidwho-1132069

ABSTRACT

In recognizing the host cellular receptor and mediating fusion of virus and cell membranes, the spike (S) glycoprotein of coronaviruses is the most critical viral protein for cross-species transmission and infection. Here we determined the cryo-EM structures of the spikes from bat (RaTG13) and pangolin (PCoV_GX) coronaviruses, which are closely related to SARS-CoV-2. All three receptor-binding domains (RBDs) of these two spike trimers are in the "down" conformation, indicating they are more prone to adopt the receptor-binding inactive state. However, we found that the PCoV_GX, but not the RaTG13, spike is comparable to the SARS-CoV-2 spike in binding the human ACE2 receptor and supporting pseudovirus cell entry. We further identified critical residues in the RBD underlying different activities of the RaTG13 and PCoV_GX/SARS-CoV-2 spikes. These results collectively indicate that tight RBD-ACE2 binding and efficient RBD conformational sampling are required for the evolution of SARS-CoV-2 to gain highly efficient infection.


Subject(s)
COVID-19/virology , Chiroptera/virology , Coronavirus/chemistry , Coronavirus/genetics , Pangolins/virology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Animals , COVID-19/epidemiology , COVID-19/transmission , Cryoelectron Microscopy , Evolution, Molecular , Host Microbial Interactions , Humans , Models, Molecular , Pandemics , Protein Domains , Sequence Homology, Amino Acid , Species Specificity , Spike Glycoprotein, Coronavirus/ultrastructure
12.
Virus Res ; 297: 198382, 2021 05.
Article in English | MEDLINE | ID: covidwho-1118716

ABSTRACT

Coronaviruses are a large group of RNA viruses that infect a wide range of animal species. The replication strategy of coronaviruses involves recombination and mutation events that lead to the possibility of cross-species transmission. The high plasticity of the viral receptor due to a continuous modification of the host species habitat may be the cause of cross-species transmission that can turn into a threat to other species including the human population. The successive emergence of highly pathogenic coronaviruses such as the Severe Acute Respiratory Syndrome (SARS) in 2003, the Middle East Respiratory Syndrome Coronavirus in 2012, and the recent SARS-CoV-2 has incentivized a number of studies on the molecular basis of the coronavirus and its pathogenesis. The high degree of interrelatedness between humans and wild and domestic animals and the modification of animal habitats by human urbanization, has favored new viral spreads. Hence, knowledge on the main clinical signs of coronavirus infection in the different hosts and the distinctive molecular characteristics of each coronavirus is essential to prevent the emergence of new coronavirus diseases. The coronavirus infections routinely studied in veterinary medicine must be properly recognized and diagnosed not only to prevent animal disease but also to promote public health.


Subject(s)
Coronavirus Infections , Coronavirus , Host Specificity , Viral Zoonoses , Animals , Coronavirus/chemistry , Coronavirus/genetics , Coronavirus/physiology , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Genome, Viral , Humans , Open Reading Frames , RNA, Viral , Viral Proteins , Viral Structures , Viral Transcription , Viral Zoonoses/transmission , Viral Zoonoses/virology , Virus Assembly , Virus Replication
13.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: covidwho-1039853

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related CoVs encode 3 tandem macrodomains within nonstructural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated antiviral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) Mac1 domains exhibit similar structural folds, and all 3 proteins bound to ADP-ribose with affinities in the low micromolar range. Importantly, using ADP-ribose-detecting binding reagents in both a gel-based assay and novel enzyme-linked immunosorbent assays (ELISAs), we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate than the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity.IMPORTANCE SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused more than 1.2 million deaths worldwide. With no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic posttranslational process that is increasingly being recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose and describe its ADP-ribose binding and hydrolysis activities in direct comparison to those of SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.


Subject(s)
N-Glycosyl Hydrolases/metabolism , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/metabolism , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/metabolism , Amino Acid Sequence , Coronavirus/chemistry , Coronavirus/enzymology , Coronavirus/metabolism , Crystallography, X-Ray , Humans , Hydrolysis , Kinetics , N-Glycosyl Hydrolases/chemistry , Protein Binding , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/chemistry
14.
Int J Mol Sci ; 22(1)2020 Dec 23.
Article in English | MEDLINE | ID: covidwho-1011558

ABSTRACT

Our evolutionary and structural analyses revealed that the severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) spike gene is a complex mosaic resulting from several recombination events. Additionally, the fixation of variants has mainly been driven by purifying selection, suggesting the presence of conserved structural features. Our dynamic simulations identified two main long-range covariant dynamic movements of the novel glycoprotein, and showed that, as a result of the evolutionary duality, they are preserved. The first movement involves the receptor binding domain with the N-terminal domain and the C-terminal domain 2 and is maintained across human, bat and pangolin coronaviruses. The second is a complex network of long-range dynamics specific to SARS-CoV-2 involving the novel PRRA and the conserved KR*SF cleavage sites, as well as conserved segments in C-terminal domain 3. These movements, essential for host cell binding, are maintained by hinges conserved across human, bat, and pangolin coronaviruses glycoproteins. The hinges, located around Threonine 333 and Proline 527 within the N-terminal domain and C-terminal domain 2, represent candidate targets for the future development of novel pan-coronavirus inhibitors. In summary, we show that while recombination created a new configuration that increased the covariant dynamic movements of the SARS-CoV-2 glycoprotein, negative selection preserved its inter-domain structure throughout evolution in different hosts and inter-species transmissions.


Subject(s)
Recombination, Genetic , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Animals , Chiroptera/virology , Coronavirus/chemistry , Coronavirus/genetics , Evolution, Molecular , Host Specificity , Humans , Molecular Dynamics Simulation , Pangolins/virology , Phylogeny , Protein Binding , Protein Domains , SARS-CoV-2/genetics
15.
Eur J Pharmacol ; 892: 173751, 2021 Feb 05.
Article in English | MEDLINE | ID: covidwho-996863

ABSTRACT

Coronavirus Disease 2019 named as COVID-19 imposing a huge burden on public health as well as global economies, is caused by a new strain of betacoronavirus named as SARS-CoV-2. The high transmission rate of the virus has resulted in current havoc which highlights the need for a fast and effective approach either to prevent or treat the deadly infection. Development of vaccines can be the most prominent approach to prevent the virus to cause COVID-19 and hence will play a vital role in controlling the spread of the virus and reducing mortality. The virus uses its spike proteins for entering into the host by interacting with a specific receptor called angiotensin converting enzyme-2 (ACE2) present on the surface of alveolar cells in the lungs. Researchers all over the world are targeting the spike protein for the development of potential vaccines. Here, we discuss the immunopathological basis of vaccine designing that can be approached for vaccine development against SARS-CoV-2 infection and different platforms that are being used for vaccine development. We believe this review will increase our understanding of the vaccine designing against SARS-CoV-2 and subsequently contribute to the control of SARS-CoV-2 infections. Also, it gives an insight into the current status of vaccine development and associated outcomes reported at different phases of trial.


Subject(s)
COVID-19 Vaccines , Animals , Biological Products/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , Coronavirus/chemistry , Coronavirus/genetics , Drug Design , Drug Development , Humans , Immunologic Factors/therapeutic use , Viral Structures
16.
Microbiol Immunol ; 65(4): 154-160, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-965526

ABSTRACT

Currently, the whole world is facing the coronavirus disease-19 pandemic. As of now, approximately 0.15 million people around the globe are infected with the novel coronavirus. In the last decade, two strains of the coronavirus family, severe acute respiratory syndrome-related coronavirus and Middle East respiratory syndrome coronavirus, also resulted in epidemics in south Asian and the Middle Eastern countries with high mortality rate. This scenario demands the development of a putative vaccine which may provide immunity against all current and new evolving coronavirus strains. In this study, we designed an epitope-based vaccine using an immunoinformatic approach. This vaccine may protect against all coronavirus strains. The vaccine is developed by considering the geographical distribution of coronavirus strains and host genetics (Chinese population). Nine experimentally validated epitopes sequences from coronavirus strains were used to derive the variants considering the conservancy in all strains. Further, the binding affinities of all derived variants were checked with most abundant human leukocyte antigen alleles in the Chinese population. Three major histocompatibility complex (MHC) Class I epitopes from spike glycoprotein and nucleoprotein showed sufficient binding while one MHC Class II epitope from spike glycoprotein was found to be an effective binder. A cocktail of these epitopes gave more than 95% population coverage in the Chinese population. Moreover, molecular dynamics simulation supported the aforementioned predictions. Further, in vivo studies are needed to confirm the immunogenic potential of these vaccines.


Subject(s)
Coronavirus Infections/prevention & control , Coronavirus/immunology , Viral Vaccines/immunology , Alleles , Amino Acid Sequence , China , Coronavirus/chemistry , Coronavirus/genetics , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/chemistry , Viral Vaccines/genetics
17.
Microb Pathog ; 150: 104641, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-939160

ABSTRACT

Coronaviruses (CoVs) are causing a number of human and animal diseases because of their zoonotic nature such as Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19). These viruses can infect respiratory, gastrointestinal, hepatic and central nervous systems of human, livestock, birds, bat, mouse, and many wild animals. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerging respiratory virus and is causing CoVID-19 with high morbidity and considerable mortality. All CoVs belong to the order Nidovirales, family Coronaviridae, are enveloped positive-sense RNA viruses, characterised by club-like spikes on their surfaces and large RNA genome with a distinctive replication strategy. Coronavirus have the largest RNA genomes (~26-32 kilobases) and their expansion was likely enabled by acquiring enzyme functions that counter the commonly high error frequency of viral RNA polymerases. Non-structural proteins (nsp) 7-16 are cleaved from two large replicase polyproteins and guide the replication and processing of coronavirus RNA. Coronavirus replicase has more or less universal activities, such as RNA polymerase (nsp 12) and helicase (nsp 13), as well as a variety of unusual or even special mRNA capping (nsp 14, nsp 16) and fidelity regulation (nsp 14) domains. Besides that, several smaller subunits (nsp 7- nsp 10) serve as essential cofactors for these enzymes and contribute to the emerging "nsp interactome." In spite of the significant progress in studying coronaviruses structural and functional properties, there is an urgent need to understand the coronaviruses evolutionary success that will be helpful to develop enhanced control strategies. Therefore, it is crucial to understand the structure, function, and interactions of coronaviruses RNA synthesizing machinery and their replication strategies.


Subject(s)
Coronavirus/physiology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Animals , COVID-19/virology , Coronavirus/chemistry , Coronavirus/genetics , Coronavirus/metabolism , Genome, Viral , Humans , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Virus Replication
18.
Biomed Res Int ; 2020: 7234961, 2020.
Article in English | MEDLINE | ID: covidwho-889954

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a single-stranded RNA genome that encodes 14 open reading frames (ORFs), eight of which encode accessory proteins that allow the virus to infect the host and promote virulence. The genome expresses around 29 structural and nonstructural protein products. The accessory proteins of SARS-CoV-2 are not essential for virus replication but do affect viral release, stability, and pathogenesis and finally contribute to virulence. This paper has attempted the structure prediction and functional analysis of two such accessory proteins, 9b and ORF14, in the absence of experimental structures. Sequence analysis, structure prediction, functional characterization, and evolutionary analysis based on the UniProtKB reviewed the amino acid sequences of SARS-CoV-2 9b (P0DTD2) and ORF14 (P0DTD3) proteins. Modeling has been presented with the introduction of hybrid comparative and ab initio modeling. QMEANDisCo 4.0.0 and ProQ3 for global and local (per residue) quality estimates verified the structures as high quality, which may be attributed to structure-based drug design targets. Tunnel analysis revealed the presence of 1-2 highly active tunneling sites, perhaps which will able to provide certain inputs for advanced structure-based drug design or to formulate potential vaccines in the absence of a complete experimental structure. The evolutionary analysis of both proteins of human SARS-CoV-2 indicates close relatedness to the bat coronavirus. The whole-genome phylogeny indicates that only the new bat coronavirus followed by pangolin coronaviruses has a close evolutionary relationship with the novel SARS-CoV-2.


Subject(s)
COVID-19/virology , Chiroptera/virology , Coronavirus/genetics , Open Reading Frames , SARS-CoV-2/genetics , Viral Proteins/chemistry , Viral Proteins/genetics , Amino Acid Sequence , Animals , Coronavirus/chemistry , Coronavirus/metabolism , Evolution, Molecular , Genome, Viral , Humans , Models, Molecular , Phylogeny , Protein Conformation , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Sequence Analysis , Virus Replication
19.
Cell Syst ; 12(1): 82-91.e3, 2021 01 20.
Article in English | MEDLINE | ID: covidwho-856528

ABSTRACT

Viruses deploy genetically encoded strategies to coopt host machinery and support viral replicative cycles. Here, we use protein structure similarity to scan for molecular mimicry, manifested by structural similarity between viral and endogenous host proteins, across thousands of cataloged viruses and hosts spanning broad ecological niches and taxonomic range, including bacteria, plants and fungi, invertebrates, and vertebrates. This survey identified over 6,000,000 instances of structural mimicry; more than 70% of viral mimics cannot be discerned through protein sequence alone. We demonstrate that the manner and degree to which viruses exploit molecular mimicry varies by genome size and nucleic acid type and identify 158 human proteins that are mimicked by coronaviruses, providing clues about cellular processes driving pathogenesis. Our observations point to molecular mimicry as a pervasive strategy employed by viruses and indicate that the protein structure space used by a given virus is dictated by the host proteome. A record of this paper's transparent peer review process is included in the Supplemental Information.


Subject(s)
Coronavirus/genetics , Host-Pathogen Interactions/genetics , Molecular Mimicry/genetics , Viral Proteins/genetics , Virome/genetics , Virus Diseases/genetics , Animals , Coronavirus/chemistry , Culicidae , Databases, Genetic , Humans , Protein Structure, Secondary , Viral Proteins/chemistry , Virus Diseases/epidemiology , Viruses/chemistry , Viruses/genetics
20.
Epidemiol Infect ; 148: e229, 2020 09 29.
Article in English | MEDLINE | ID: covidwho-851179

ABSTRACT

The pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has emerged as a serious global public health issue. Since the start of the outbreak, the importance of hand-hygiene and respiratory protection to prevent the spread of the virus has been the prime focus for infection control. Health regulatory organisations have produced guidelines for the formulation of hand sanitisers to the manufacturing industries. This review summarises the studies on alcohol-based hand sanitisers and their disinfectant activity against SARS-CoV-2 and related viruses. The literature shows that the type and concentration of alcohol, formulation and nature of product, presence of excipients, applied volume, contact time and viral contamination load are critical factors that determine the effectiveness of hand sanitisers.


Subject(s)
Alcohols/chemistry , Betacoronavirus/drug effects , Hand Sanitizers/chemistry , Hand Sanitizers/standards , Alcohols/pharmacology , Betacoronavirus/chemistry , COVID-19 , Coronavirus/chemistry , Coronavirus/drug effects , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Drug Contamination , Hand Sanitizers/pharmacology , Humans , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL